Subject Index to Volume 21

N-Acetyl-DL-penicillamine
 vitamin B6 and copper metabolism, rat, 715
N-Acetyl-L-cysteine
 vitamin B6 and copper metabolism, rat, 715

Acid-ash content
 hospital diets, 898

Acidosis
 diet for kidney failure, 547

Acids, endogenous diet, 451

Adipose tissue: see also Fat; Fatty acids; Obesity
 composition change, weight reduction, 305
 fatty-acid composition, dietary fat, 255
 insulin-like activity, proteases and phospholipases, 1216
 insulin response, obesity, 1445
 obesity, insulin, 1398
 starvation, cell size and number, 1455

Adrenal cortex
 glucocorticoid-induced obesity, 1471
 hormones in starvation, kwashiorkor, marasmus, 1455

Alcoholism
 nutritional status, thiamine, riboflavin, niacin, 1329
 thiamine absorption and deficiency, 1341

Aldolases, tissue
 fructose metabolism, 315

Altitude
 protein metabolism, 154
 water balance, 154

Amino acid: see also Nitrogen; Nitrogen balance; Protein; individual amino acids
 absorption, leucine-free mixture, rat, 1194
 branched-chain, plasma, niacin deficiency, 1314
 carbohydrate metabolism, 185
 essential, intake, nitrogen retention, 217
 essential, special diet, dialysis patients, 618
 intestinal transport, evolutionary and genetic history, 188
 intestinal transport, experimental protein-calorie malnutrition, rat, 1302
 metabolism, dietary urea, in kidney failure, 394
 plasma, dietary nitrogen, 1381
 plasma, dietary protein, rat, 358
 plasma, hemodialysis, kidney failure, 565
 plasma, kwashiorkor and marasmus, child, 723
 plasma, niacin deficiency, 1314
 plasma pattern, paper chromatography, 723
 protein, dietary, 167
 requirement, 367
 requirement, in uremia, 382
 supplementation, cereals, 523, 688
 supplementation, microatomized protein foods, 1355

Anemia: see also Iron; Iron therapy
 folate-deficiency, therapeutic dosage, 743
 folate-deficiency, tropical sprue, 1097
 geophagia, 78
 iron-deficiency, geophagia, 1384
 iron-deficiency, India, 1139, 1149, 1156
 iron-deficiency, Iran, 709
 iron-deficiency, occurring with other deficiencies, 1115
 iron-deficiency, therapy, ferrous sulfate with ascorbic acid, 284
 iron therapy in parasitized children, 57, 68
 megaloblastic, folic acid deficiency and therapy, tropical sprue, 1097
 megaloblastic, iron, folic acid or vitamin B12 deficiency, incidence, 1115
 megaloblastic, vitamin B12 malabsorption, stagnant-loop syndrome, 1097
 pernicious, parenteral hydroxy- or cyanocobalamin, 657
 pernicious, vitamin B12 retention, 665
 protein malnutrition, adult, 813
 rural Haiti, prevalence, therapy, 1042
 trace element supplementation in parasitized children, 68
 tropical sprue, protein deficiency, therapy, 1053
 vitamin B12-deficiency, therapeutic dosage, 743

Anemia of prematurity
 hemolysis, 15
 linoleic acid deficiency, 13
 vitamin E deficiency, 15
 vitamin E level, serum, 40
 vitamin E therapy, 45

Annual Meeting, ASCN, 1968
 abstracts of papers, 529
 program, 252, 337, 526

Anorexia
 kwashiorkor recovery, microatomized protein foods, 1355

Anorexia nervosa
 metabolic and endocrine changes, 1455

Anthelmintic treatment, 57

Anthropometry
 child, nutritional and socioeconomic status, 1280

Antibiotics
 tetracycline, tropical sprue, protein deficiency, 1042
Antibiotics—(Continued)
 therapy, stagnant-loop syndrome, tropical sprue, 1007
 therapy, tropical sprue, 1030
 therapy, tropical sprue, helminthic parasites, 1007
 tropical sprue, 962
Aorta
 chromium, 230
ASCN, 1968 Annual Meeting
 abstracts, 529
 program, 526
Ascorbic acid
 absorption of iron supplements, 284
 biosynthesis and excretion, glucuronolactone, 736
 folic acid assay, 1202
 iron absorption from foods, 1184
 plasma and leukocyte: age, sex, and smoking, 1254
 plasma, migrant workers, 1229
 requirement and metabolism, alcoholism, 1325
 retention, blood and urine levels, smoking, 1259
Adenosine triphosphate growth patterns
 protein-calorie malnutrition, 162
Azotorrhea
 severity, nomogram of fecal weight, lipid and nitrogen, 1310

Bacteria
 microflora, stomach, intestine, 1097
 small intestine, normal flora, diarrhea, malabsorption, 1088
 small intestine, stagnant-loop syndrome, indicanuria, 1097
Barium sulfate
 inert fecal marker, 1239
Bile salts, deficiency
 fat malabsorption, dietary therapy, 300
Biotin
 deficiency, raw egg white, and cirrhosis, 173
 requirement and metabolism, alcoholism, 1325
Blood
 ascorbic acid, plasma and leukocytes, 1254
 ascorbic acid, smoking, 1259
 chemistry, dialysis interval, uremia, 574
 chemistry, malnutrition-induced malabsorption, 1066
 chemistry, protein deficiency, tropical sprue, 1042
 chemistry, restricted diet, 793
 erythrocyte, diagnosis of galactosaemia, 923
 erythrocyte, maternal and fetal transketolase, 739
 erythrocyte transaminase, age, sex, vitamin B6, 502
 folic acid assay, microbiological, 1345
 glucose, after cyclamate-saccharin mixture or sucrose, 673
 glucose and its metabolites, infant, marasmus, 1285
 glucose, insulin and growth hormone secretion, 467
 glucose, insulin, in uremia, 414
 hematocrit and erythrocyte transketolase, migrant workers, 1229
 hematocrit and protein, tropical jejunitis, 1013
 hematocrit, USA population study, 331
 hemoglobin, hematocrit and serum cholesterol, diet, child, 1274
 iron, repeated phlebotomy, 1149
 ketosis, fatty acids and glycerol, 1269
 ketosis, growth hormone and insulin, 1269
 leukocytes, carbohydrate metabolism, malnutrition, 376
 lipemia, kidney failure, hemodialysis, 426
 protein, children, Iran, 488
 red cell production, diet for uremia, 553
 replacement after injury, 911
 sugar and ketosis, 1269
 urea and nonprotein nitrogen, wheat-flour diet, 827
 urea, dialysis patients, special diet, 618
 urea, diet for kidney failure, 547
 urea, uremia, special diet, 595
 whole, folic acid assay method, 327

Blood plasma
 albumin and growth hormone, malnutrition, 482
 amino acids and albumin, kwashiorkor, rat, 820
 amino acids, diet, rat, 358, 367
 amino acids, dietary nitrogen, 1381
 amino acids, hemodialysis, 565
 amino acids, kwashiorkor, 367, 723
 amino acids, marasmus, 723
 ascorbic acid, after glucuronolactone dose, 736
 ascorbic acid, carotene and vitamin A, 1229
 glucose and insulin, obesity, hypertriglyceridemia, 904
 lipids, experimental obesity, kwashiorkor, marasmus, 1455
 lipids, uremia, hemodialysis, 430
 lysine, cystinuria, 733
 pH, diet for uremia, 553
 phosphate, diet for kidney failure, 547
 protein, dietary urea, in kidney failure, 394
 protein, nonprotein nitrogen supplement, infant growth, 367
 triglycerides, body weight, 904
 tryptophan, branched-chain amino acids and tyrosine, niacin deficiency, 1314
 uric acid, diet, 892
 zinc, Iranian children, 488

Blood serum
 albumin, dialysis patients, special diet, 618
 binding of folic acid, 289
 cholesterol, dietary fat, heart disease, 255
 cholesterol, dietary glucose and fructose, myocardial infarction, 1396
 cholesterol, USA population study, 331
 cholesterol, vegetarian diet, 853
 creatinine, diet for kidney failure, 547
Comments in Biochemistry—(Continued)
Fructose metabolism. IV. Enzyme deficiencies: Essential fructosuria, fructose intolerance, and glycogen-storage disease, 693
Fructose metabolism. V. Catalytically coupled reactions, 778
The galactose metabolic pathway, 127
Galactosemia, 923
Insulin-like activity of proteases and phospholipases, 1216
Comments in Gastroenterology
Control of iron absorption by intestinal luminal factors, 1189
Evolutionary and genetic history of intestinal amino acid transport, 188
The exocrine pancreas in intestinal malabsorption syndromes, 520
Water absorption from the intestine, 781
Conjugase
follic acid assay, 1202
Copper
excretion, acetylcysteine, penicillamine and acetylpenicillamine, 715
Coronary heart disease: see also Atherosclerosis; Cholesterol; Heart disease
diet, 143
etiology and risk, 143
serum cholesterol, 143
Cortisol
experimental obesity, kwashiorkor, marasmus, 1455
Cottonseed protein
protein-calorie malnutrition, 212
Creatinine
 clearance, diet for uremia, 533
uremia, special diet, 595
urinary excretion and childhood pellagra, 98
urine, nutritional status, 1229, 1274
Cyclamates
metabolism and safety, 673
Cyclamates, safety, 644
Cystinuria
metabolism after lysine supplementation, 733
Death and disease
Japan, 20-year change, 753
Nepal, child, 875
Death, heart disease
dietary fat, 255
Desferrioxamine
iron absorption from foods, 1184
Diabetes (mellitus)
chromium, urinary, 230
chronic diseases, occurrence with other, USA, 333
cyclamate-saccharin intake, blood glucose, 673
hereditary, glucose tolerance, 1455
obesity, 1434
prevalence, 333
serum insulin, glucose tolerance, 1419
Diarrhea
bacteria, malabsorption, 1088
comparative study, nonpathogenic, 994
epidemiology, Salmonella and other, south India, 1077
pantothenic acid deficiency, pig, 495
protein malnutrition, adult, 813
Diet: see also Food; other Diet headings
acid-base homeostasis, 451
amino acids, plasma, 358
cereal, lysine supplementation, 523
cardiovascular disease, 1280
coronary heart disease, 143
dietary score, index of adequacy, 1274
experimental kwashiorkor, rat, 820
fat and carbohydrate, glucose tolerance, 904
follic acid content, 1121
history, alcoholics, 1329
Hong Kong, child, skin fold and protein nutrition, 1197
India, phosophorus and phytate content, 1156
infant feeding, hypertension, 863
iron absorption, chelates, ascorbic acid, 1184
iron absorption from bread, with other nutrients, 1162, 1170
iron absorption, interaction of plant and animal foods, 1175
Japan, national survey, 20-year change, 753
leucine-free, amino acid absorption, 1194
Malayan women, 183
migrant workers, blood and urine chemistry, 1229
Nepal, national survey, 875
nitrogen, plasma amino acids, 1381
nutritional value, medical school nutrition training, 320
obesity, insulin secretion, 1398
Puerto Rico, nutritional status survey, 646
rice or rice with wheat, nutritional status, child, 1197
south India, tropical sprue, and other diarrhea epidemics, 1077
supplements, ferrous sulfate with ascorbic acid, 284
vegetarian, serum cholesterol, 853
wheat flour, protein source, 827
wheat phytate and geophagia, endocrine-defect syndrome, Iran, 709
yeast ribonucleic acid and egg albumin, uric acid production, 892
Diet, gluten-free
potassium balance, 149
Diet, high gluten	potassium balance, 149
Diet, low fat
vitamin E absorption in premature infants, 45
vitamin E level, serum, 40
Diet, special
alcoholism and vitamins, 1325
Dietary combat, 793, 803
cystinuria, lysine supplementation, 733
electrolyte metabolism studies, liquid, low mineral, 1321
galactosaemia, infant, child, 923
heart disease, prevention, 255
hemodialysis, protein requirement, 385
hospital, acidity and alkalinity, 898
hospital, folic acid content, 1202
hospital, phosphorus and sulfate content, 898
injury and surgery, intravenous and tube feeding, 911
kidney failure and hemodialysis, lipemia, 426
kidney failure, dialysis, protein repletion, 583
kidney failure, low protein, 547
kidney failure, low protein with urea, 394
kidney transplantation, uremia, 349
kwashiorkor, microatomized protein food mixtures, 1355
malabsorption, medium-chain triglycerides, 300
malnutrition-induced malabsorption, 1066
minimum inorganic constituents, 451
nutrition training, medical school, 320
osteoporosis, high calcium, 1246
programmed instruction, hemodialysis patients, 613
protein repletion, adult, 813
sugar-free, monosaccharide malabsorption, infant, 516
tropical sprue, high protein, 994
uremia, amino acid requirement, 382
uremia, assessing patient adherence, 631
uremia, dialysis patient adherence, 626
uremia, hemodialysis, lipemia, 430
uremia, hemodialysis patients, instruction, 638
uremia, hemodialysis, protein restriction, 574
uremia, infrequent dialysis, 603
uremia, low protein, dietetic cereal substitutes, 591
uremia, low protein, high essential amino acids, 618
uremia, minimum protein requirement, 352
uremia, protein requirement, 508
uremia, protein restriction, 533, 595
vegetables, reduced potassium content, cooking method, 626
weight reduction, cyclamate-saccharin mixture, 673
weight reduction, fat and carbohydrate content, high protein, 1291
weight reduction, medical school training, 320
Dietary Management and Therapy
A low electrolyte liquid diet suitable for metabolic studies, 1321

Dietetic products
Cereal substitutes, uremia, 591
cyclamate, cyclamate-saccharin combinations, safety, 673
noncaloric sweetening agents, safety, 644
Dietitian
role in nutrition training, medical school, 320
role in teaching hemodialysis patients, 613
Disease
chronic, occurrence with diabetes, USA, 333
world food problem, malnutrition, 868
Drugs
dosage and response changes, fasting, 1475
phenothiazine, psychiatric patients, electrocardiogram, 255
Dwarfism
nutrition, Iran, 709

Edema
Experimental kwashiorkor, rat, 820

Editorials
Animal models and human protein-calorie malnutrition, Kirsch, R. E., S. J. Saunders and J. F. Brock, 1225
Comment on proposed APHA policy statement, Watkin, D. M., 886
Health and poverty, A proposed policy statement of the American Public Health Association, 883
Herman, R. H., 887
Interrelationship of nutrition and endocrinology, Eisenstein, A. B., 467
Noncaloric sweetening agents, Rubini, M. E., 644
Nutritionists in the new public health: an educator looks at public health, Levin, L. S., 701
Critique of L. S. Levin editorial, Watkin, D. M., 706
Rebuttal, Levin, L. S., 707
Rubini, M. E., 785
Salt in processed baby foods, Dahl, L. K., 787
Whither nutrition?, Holt, L. E., Jr., 1353
Editorial review policy, 1397

Education
dietary, hemodialysis patients, 638
nutrition training, medical school, 320
programmed instruction, hemodialysis patients, 613
uremia, dialysis patient adherence to special diet, 626

Egypt
goiter in oases, 277
Electrocardiogram, psychiatric patients
dietary fat, heart disease, 255
phenothiazine drugs, 255
Electroencephalogram
restricted diet, 793
Endocrine hormones
 adaptation to food supply, 1455
 defect syndrome, 709
 obesity, insulin, growth hormone, 1397
Endocrinology
 nutrition, 467
Energy
 basal expenditure, obesity, 1475
 metabolism, body composition, weight reduction, 305
 metabolism efficiency, obesity, 1480
 metabolism, fasting, weight reduction, 1475
 metabolism, glucocorticoid excess, 1471
 metabolism, starvation ketosis, child, 1269
 metabolism, starvation, obesity, 1429
Enzymes: see also specific enzymes
 aldolases, 315
 deficiencies, fructose metabolism, 516, 693
 fructose metabolism, regulation, 315
 leukocytes and muscle in malnutrition, 376
 pancreas, malabsorption, 520
 protein metabolism, dietary protein, rat, 358
Erythrocyte
 stability in equines and a-tocopherol requirement, 135
Ethics of human research, 785
Exercise
 caloric response, obese women, 1208
Fasting
 drug response and dose changes, 1475
 heart failure therapy, 1475
 ketosis, energy, sodium and water metabolism, 1475
Fat, dietary: see also Obesity; Adipose tissue; Lipid absorption, medium-chain triglycerides, 300
 heart disease, prevention, 255
 malabsorption therapy, 300
 metabolism, medium-chain triglycerides, 300
Fatty acids
 plasma, starvation ketosis, child, 1269
Fatty acids, dietary
 polyunsaturated, heart disease, 255
Fatty acids, polyunsaturated
 red cell fatty acid composition and vitamin E metabolism, 7
 vitamin E in infants, 7
Feces
 weight, lipid and nitrogen, 1310
Folic acid
 absorption from diet, gastrectomy, 473
 absorption, tropical sprue, 994
 assay, coated charcoal, 289
 assay, Lactobacillus casei, ascorbic acid, conjugase, 1202
 assay method, hospital foods, 1202
 assay method, microbiological, serum, whole blood, 327
 assay, microbiological, whole blood and serum, 1345
 availability from diet, 743
 bacterial synthesis, stagnant-loop syndrome, 1097
 calf liver as natural source, 473
 content, foods, 1121
 deficiency and therapy, tropical sprue, 1030, 1053
 deficiency anemia, tropical sprue, 1007
 deficiency, tropical sprue, pregnancy, 1115
 deficiency, therapeutic dosage, 743
 dietary, absorption and malabsorption, 1121
 liver, formiminoglutamic acid excretion, rat, 1374
 milk, binding, 289
 minimum daily requirement, 743
 requirement and metabolism, alcoholism, 1325
 serum, binding, 289
 therapy, tropical sprue, 1007, 1042, 1097
 tropical sprue, 962
Folinic acid
 dosage, folate deficiency, 743
Food
 cereals, world supply, amino acid supplementation, 688
 composition, acidity and alkalinity, 898
 composition, folic acid, 1121
 composition, folic acid, hospital diets, 1202
 composition, microatomized protein foods, 1355
 composition, phosphorus and sulfate, 898
 composition, standard tables, Japan, 753
 consumption, Nepal, 875
 consumption, vegetarians, serum cholesterol, 853
 dietetic, low protein cereal substitutes, uremia, 591
 infant, sodium, content, 787, 863
 intake, regulation, 1471
 iron absorption from corn, black beans, veal and fish, 1175
 iron absorption from wheat, corn, soybeans, and ferritin, 1184
 milk substitute, 1355
 supply, South Africa, 926
 supply, 20-year change, Japan, 753
 vegetables, reduced potassium content, cooking method, 626
 wheat flour, dietary protein source, 827
 whey, cow’s milk, special diet in uremia, 603
 world problem, disease, parasites, 868
 world supply, increasing population, 1130
Food habits
 geophagia, nutritional effects, 1384
Formiminoglutamic acid
 excretion, experimental protein malnutrition, liver folate and vitamin B12, rat, 1374
Formiminoglutamic acid transferase
 liver, experimental protein malnutrition, rat, 1374
Subject Index to Volume 21

Fructokinase
deficiency, liver, essential fructosuria, 693
fructose metabolism, regulation, liver, 315
Fructose
incorporation in serum lipids, myocardial infarction, 1366
intolerance, 693
intolerance with galactosemia, 693
metabolic pathway, 245
metabolism, coupled reactions, 779
metabolism, enzyme deficiencies, 516, 693
metabolism, regulation, 315
Fructosuria, essential, 693
Galactose
metabolism, 127, 923
Galactose-1-phosphate uridyl transferase
galactosaemia, 923
Galactosemia
diagnosis with erythrocytes, special diet, 923
Gastrointestinal malfunction
cyclamate-saccharin mixture, 673
Geomania, 1384
Geophagia: see also Pica
anemia, 78
growth, children, Iran, 488
history, incidence, etiological theories, clinical and nutritional effects, 1384
Iran, endocrine defect syndrome and anemia, 709
iron and zinc deficiencies, mineral absorption, 1384
Glucose
absorption and metabolism, infant, marasmus, 1285
blood, cyclamate-saccharin mixture or sucrose, 673
growth hormone secretion, 467
incorporation in serum lipids, myocardial infarction, 1366
insulin secretion, 467
intestinal transport, pantothenate deficiency, pig, 495
obesity, hypertriglycemia, 904
oral tolerance test, classification of results, 1419
tolerance, dietary fat and carbohydrate, 904
tolerance, experimental obesity, kwashiorkor, marasmus, 1455
tolerance, obesity and diabetes mellitus, 1419
tolerance, obesity, insulin, 1404
tolerance, tropical jejunitis, 1013
Glucose metabolism
amino acids, 185
glucocorticoid excess, 1471
insulin, in uremia, 414
obesity, muscle, adipose tissue, liver, 1404
obesity, pseudodiabetes, 1445
uremia, 407
Glucose tolerance
chromium (III), 203
Glucuronolactone
conversion to ascorbic acid, man, 736
Glycogen storage disease
muscle, 693
Goiter
iodine deficiency, Egypt, 277
Gonads
biopsies, inanition hypopituitarism, zinc deficiency
Great Britain
iron supplementation of flour, 1162
Growth
children, Iran, 488
Growth hormone
experimental obesity, kwashiorkor, marasmus, 1455
forearm tissue response, obesity, 1438
obesity, 1398
secretion, amino acids and protein, 467
secretion, blood glucose, 467
secretion, protein-calorie malnutrition, 482
starvation ketosis, child, 1269
Hair
protein loss, 352
Haiti
rural, tropical sprue, protein deficiency and anemia, 1042
Health survey
Nepal, diet and nutritional status, 875
Heart
chromium, 230
Heart disease
death rate and dietary fat, 255
infant processed food, salt content, 787
infant sodium intake, 863
myocardial infarction, dietary glucose and fructose in serum lipids, 1366
pschiatric patients, dietary fat, 255
Heart rate
wheat-flour diet, 827
Hemodialysis: see Kidney
Hemoglobin
pellagra, childhood, 98
Histidase
liver, experimental protein malnutrition, rat, 1374
Histidine
metabolism, liver, experimental protein malnutrition, rat, 1374
Holm, L. Emmett, Jr.
recipient, McCollum Award, 1134
Homeostasis
acid-base, diet, 451
Hormones
pancreas, secretin and pancreozymin, malabsorption, 520
Hunger
hypoglycemia, exercise, 1398
Hypercholesterolemnia, familial
fat malabsorption, dietary therapy, 300
Subject Index to Volume 21

Hypertension
processed infant food, salt content, 787
sodium in infant foods, 863
Hypertriglyceridemia
obesity, glucose and insulin, 904
Hypoglycemia
chromium(III), 195
uremia, 407
Hypogonadism
nutrition, Iran, 709
Hypothalamus
carbohydrate metabolism, obesity, 1404
Immunology
small intestine diseases, immunoglobulins and antibodies, 1110
Incaparina (infant food)
nitrogen retention, weight gain, 226
India
iron deficiency, 1139, 1149
iron deficiency and metabolism, 1156
south, epidemiology of tropical sprue and other diarrhea, 1077
south, tropical sprue, 984
west, tropical sprue, 994
Indoles
identification by countercurrent distribution, 436
identification by paper chromatography, 436
serum, in uremia, 436
Infant feeding
Incaparina, 226
vegetable protein mixture, 226
Infant feeding practices
sodium intake, hypertension, 787
solid foods, early, hypertension, 863
Injury
metabolic effects, nutritional requirements, 911
Insulin
antagonism, experimental obesity, 1455
antagonists, tissue resistance, obesity, 1404
glucose metabolism, in uremia, 414
immunoreactive, obesity, 1404
metabolic response, muscle, in uremia, 423
obesity, 1398
obesity, carbohydrate utilization, 1404
obesity, hypertriglyceridemia, 904
secretion and forearm tissue response, obesity, 1438
secretion, blood glucose, 467
secretion, obesity, 1445
secretion, pseudodiabetes, 1445
serum, experimental obesity, kwashiorkor, marasmus, 1455
serum, obesity and diabetes mellitus, 1419
starvation ketosis, child, 1269
Insulin-like activity
obesity, 1404
proteases and phospholipases, 1216
serum, experimental obesity, 1455
Intelligence
kwashiorkor, testing methods, 844
International Nutrition
Diet and nutritional status of Japanese, 753
Health survey of Nepal: Diet and nutritional status of the Nepalese people, 875
Intestine
bacterial contents and tropical sprue, 1007
jejunal mucosa, infant and child malnutrition, 976
jejunitis, absorption, metabolism, enzymes, 1013
jejunitis, bacteria, parasites, 1013
jejunitis, biopsy methods and classification, 1013
jejunum and ileum, pathology, tropical sprue, 962
jejunum loop, amino acid absorption, rat, 1194
jejunum, tropical sprue, folie acid therapy, 1007
jejunum, tropical sprue, protein deficiency, 1042
lumen, iron absorption control, 1189
tropical sprue, ileal and jejunal biopsy, 1030
water absorption, 781
Intestine, small
amino acid transport, protein-calorie malnutrition, rat, 1302
biopsy, light microscopy, 944
diarrhea, malabsorption, 1088
disease, immunological factors, 1110
dysfunction, Pakistanis, Americans in Pakistan, 1023
dysfunction, xylose absorption, parasites, 1023
lymphatic drainage defect, dietary therapy, 300
malabsorption, dietary therapy, 300
morphological identification, pathology, 944
stagnant-loop syndrome and tropical sprue compared, 1097
structure effects, malnutrition, 813
structure, function, bacteria, 1088
Iodine deficiency
goiter, Egypt, 277
Iran
nutritional status, diet, endocrine-defect syndrome, 709
village children, growth, 488
Iron
absorption, chelates, ascorbic acid, 1184
absorption control, intestinal lumen, 1189
absorption, excessive, pancreas, 1189
absorption, ferrous sulfate with ascorbic acid, 284
absorption from wheat bread, 1162, 1170
absorption, interaction of plant and animal foods, 1175
deficiency and metabolism, India, 1156
deficiency anemia, therapy, 284
deficiency, India, 1139, 1149
deficiency, infant feeding practices, India, 1156
liver stores, geographical comparison, 1139
malabsorption, deficiency, geophagia, 1384
nutritional status, hemosiderin determination, 1139
nutritional status, repeated phlebotomy, 1149
supplementation of flour, Great Britain, 1162
Iron therapy
anemia in parasitized children, 57, 68
Japan
diet, nutritional status, 20-year change, 753
Ketosis
starvation, child, energy metabolism, hormones, 1269
Kidney
acid excretion, diet, 451
chromium, 230
disease, processed infant food, salt content, 787
glomerulonephritis, insulin and glucose metabolism, 414
hemodialysis, evaluation of uremia control, 638
hemodialysis, insulin and glucose metabolism, 414
hemodialysis patients, programmed instruction, 613
infant, sodium in processed food, 863
nephritis, child, dietary protein, 349
pyelonephritis, insulin and glucose metabolism, 414
transplantation, dietary management, 349
uremia, amino acid requirement, 382
uremia, bone mineral metabolism and osteodystrophy, 437
uremia, carbohydrate and phosphate metabolism, 407
uremia, dialysis patient adherence to special diet, 626
uremia, dialysis patients, special diet, 618
uremia, diet, dialysis frequency, 574
uremia, dietary management, hemodialysis patients, 638
uremia, dietetic cereal substitutes, 591
uremia, hemodialysis, plasma lipids, 430
uremia, infrequent dialysis, special diet, 603
uremia, insulin and glucose metabolism, 414
uremia, insulin response, carbohydrate metabolism, 423
uremia, nutrition, 349
uremia, patient adherence to special diet, 631
uremia, protein requirement, 352, 508
uremia, protein restriction, 553
uremia, serum indoles and organic acids, 436
uremia, special diet, 595
Kidney failure
acid excretion, 451
cyclamate-saccharin intake, 673
dialysis, protein repletion, 583
dietary treatment, 547
dietary urea with low protein diet, 394
hemodialysis, lipemia, 426
hemodialysis, nitrogen balance, 385
hemodialysis, plasma amino acids, 565
Kwashiorkor
child, recovery diet, microatomized protein foods, 1355
chromium(III) and impaired glucose utilization, 195
experimental model, rat, 820
growth hormone, infant, child, 482
infant and child, jejunal mucosa, 976
mental development, 844
metabolic and endocrine changes, 1455
plasma amino acids, infant, child, 367, 723
Lactase
mucosal, tropical jejunitis, 1013
Lactobacillus casei
folic acid assay, 1202
Lactose
tolerance, tropical jejunitis, 1013
Layering hemolysis test
tocopherol deficiency, 135
Letters to the Editor
Effect of frequency and size of meals, Cohn, C., 250
Effect of frequency and size of meals, Irwin, M. I.,
and R. M. Feeley, 251
Gonadal biopsies in twelve cases of inanition hypopituitarism, Prasad, A. S. and D. Oberleas, 1345
Gonadal biopsies in twelve cases of inanition hypopituitarism, Moe, P. G., 1345
Importance of zinc in human nutrition, Medal, L. S., and R. Liskar, 191
Importance of zinc in human nutrition, Prasad, A. S., 191
Lysine supplementation, Béchar, M., 1345
Lysine supplementation, Howe, E. E., G. R. Janssen and M. L. Anson, 523
Lysine supplementation, King, K. W., 523
Microbiological assay of serum and whole-blood folic acid activity, Cooperman, J. M., 1345
Microbiological assay of serum and whole-blood folic acid activity, Frank, O., H. Baker and S. H. Hutner, 327
Taylor, C. C., 1222
Leucine
deficient diet, amino acid absorption, rat, 1194
Linoleic acid, dietary reticulocytosis, 15
urinary creatine-to-creatinine ratio, 15
Lipid
feces, weight and nitrogen, 1310
research, National Dairy Council, 1211
Lipid metabolism
dietary glucose and fructose, myocardial infarction, 1366
glucocorticoid excess, 1471
lipemia, kidney failure, hemodialysis, 426
obesity, 1398
Subject Index to Volume 21

Lipid metabolism—(Continued)
 plasma, uremia, hemodialysis, 430
 starvation, 1429
Liver
 aldolases, fructokinase, 315
 chromium, 230
 enzymes, histidine metabolism, experimental protein malnutrition, rat, 1374
 experimental kwashiorkor, rat, 820
 fructose metabolism, regulation, 315
 hemosiderin measurement, iron deficiency, 1139
 hepatoma, enzymes, fructose metabolism, 693
Lung
 chromium, 230
Lysine
 intake, nitrogen retention, 217
 metabolism and supplementation, cystinuria, 733
 supplementation of cereals, 523
Magnesium
 special liquid diet, for electrolyte metabolism studies, 1321
Malabsorption: see also Tropical sprue
 bacteria, 1088
 bile salt deficiency, dietary therapy, 300
 blood chemistry, absorption, mucosal biopsy, therapy, 1066
 comparative study, 994
 fat, dietary therapy, 300
 fecal lipid, nitrogen and weight, nomogram, 1310
 immunological factors, 1110
 intestine, exocrine pancreas, 520
 malnutrition-induced, Mexico, 1066
 pancreatic lipase deficiency, dietary therapy, 300
 protein-malnutrition induced, 1053
 protein synthesis defect, dietary therapy, 300
 small intestine, lymphatic drainage defect, dietary therapy, 300
 small intestine, reduced size, dietary therapy, 300
 subclinical, prevalence, xylose absorption, Puerto Rico, 1030
Malnutrition: see also specific types
 calorie, 130
 cause of malabsorption, Mexico, 1066
 children, Iran, 488
 chromium(III) and carbohydrate metabolism, 203
 disease and parasites, food utilization, 868
 growth failure, U. S. children, 1130
 maternal, infant mortality, 1130
 Nepal, national survey, 875
 occurrence and prevention, South Africa, 926
 prevalence, Puerto Rico, nutritional status survey, 646
 protein, 130
 protein, adult, small intestine, 813
 protein-calorie, child, 376
 protein, cereals, amino acid supplementation, 688
 protein, lysine cereal supplementation, 523
 rural Haiti, malabsorption, anemia, 1042
Maltase
 mucosal, tropical jejunitis, 1013
Man
 ascorbic acid biosynthesis from glucuronolactone, 736
Marasmus
 infant and child, jejunal mucosa, 976
 infant, carbohydrate metabolism, 1285
 metabolic and endocrine changes, 1455
 nutritional, growth hormone, infant, child, 482
 nutritional, plasma amino acids, child, 723
Malaya
 tropical sprue, acute, 1007
 tropical sprue, pathology, 962
McCollum Award
 Holt, L. Emmett Jr., 1134
 McCollum, Elmer V.
 tribute, 1136
Meal conference, nutrition training format, medical school, 320
Meat
 folic acid content, 1121
Medical school
 nutrition training, 320
Meetings
 Colloquium on protein deficiencies and calorie deficiencies, 130
 Eighth Annual, The American Society for Clinical Nutrition, 252
 Proteins and food supply in South Africa, 926
 Symposium on vitamins in the elderly, 1220
Mental development
 kwashiorkor, 844
Metabolism
 adaptation to food supply, 1455
 barium sulfate, inert fecal marker, 1239
 caloric response, exercise, obese women, 1208
 cellular, protein-calorie malnutrition, 376
 inborn error, galactosemia, 923
Metabolism, carbohydrate
 chromium(III) and malnutrition, 203
Metabolism Notes
 Amino acid and carbohydrate metabolism, 185
Mexico
 malnutrition-induced malabsorption, 1066
Migrant farm workers
 diet, blood and urine chemistry, 1229
Milk
 dental health research, National Dairy Council, 1211
 folic acid binding, 289
 human, sodium content, 787
Mineral: see also specific mineral supplementation, restricted diet, 803
supplementation and restricted diet, water balance, 793
Monosaccharide intolerance, infant, 516
Mortality
infant, United States, 1130
Muscle
aldolases, fructose metabolism, regulation, 315
carbohydrate metabolism, malnutrition, 376
glycogen storage disease, 693
insulin and glucose metabolism, in uremia, 423
National Dairy Council
nutrition research program, 1211
Nepal
national dietary and nutritional status survey, 875
Nerve
conduction, diet for uremia, 553
Nicotinic acid: see also Niacin
Nicotinamide adenine dinucleotide phosphatase, niacin deficiency, 1306
Nicotinamide adenine dinucleotide phosphatase, niacin deficiency, 1306
Nicotinamide mononucleotide
erythrocyte, niacin deficiency, 1306
Niacin deficiency, erythrocyte nicotinamide nucleotides, 1306
deficiency, plasma tryptophan and other amino acids, child, adult, 1314
excretion, restricted diet, 803
metabolism, 223
\(\alpha \)-methylnicotinamide, in urine of alcoholics, 1329
requirement and metabolism, alcoholism, 1325
urine, child, nutritional status, 1274
Nicotinamide adenine dinucleotide
erythrocyte, niacin deficiency, 1306
Nicotinamide adenine dinucleotide phosphate
erythrocyte, niacin deficiency, 1306
Nitrogen: see also Amino Acids; Nitrogen Balance;
Protein; specific compounds
balance, restricted diet, mineral, 803
dietary, plasma amino acids, 1301
feces, weight and lipid, 1310
urine, child, nutritional status, 1274
Nitrogen balance: see also Amino Acids; Nitrogen;
Protein; specific compounds
altitude, 154
body composition, 305
diet, low protein, kidney failure, 547
hemodialysis patients, protein requirement, 385
microatomized protein foods, kwashiorkor recovery, 1355
negative, injury, 887
weight reduction, energy metabolism, 305
wheat-flour diet, 827
Nitrogen, nonprotein
dietary supplement, infant growth, 367
Nitrogen metabolism
essential amino acids intake, 214
lysine intake, 214
infants fed Incaparina, 226
infants fed vegetable protein mixture, 226
Note from the Editor
Rubini, M. E., 339, 883, 1129, 1331
Nutrition
amino acid requirements, 367
diabetes, carbohydrate intolerance, insulin response, 1434
energy metabolism efficiency, 1480
Parathyroid

Pellagra

Parasites

Pantothenic

Pancreatic

Pancreas

Overnutrition

Obesity—(Continued)

experimental and spontaneous, metabolic and endocrine changes, 1435
fasting or exercise, 1475
glucocorticoid induced, 1471
hereditary, metabolic, regulatory and environmental, 1480
hypertriglyceridemia, glucose and insulin, 904
immunoreactive insulin, insulin-like activity, insulin antagonists, 1404
insulin and growth hormone, forearm metabolism, 1438
insulin, carbohydrate utilization, 1404
insulin secretion, pseudodiabetes, 1445
serum insulin, glucose tolerance, 1419
starvation, energy and lipid metabolism, insulin, 1429
weight reduction, body composition change, 305
weight reduction diet, 1291
weight reduction, energy metabolism, 305
women, caloric response, exercise, 1208
Orange juice
iron absorption from bread, 1170
Overnutrition
obesity and disease, 1398

Pakistan
small intestine dysfunction, 1023

Pancreas
exocrine, intestinal malabsorption, 520
iron absorption, 1189
islet cell hyperplasia, obesity, 1445
islet cell hypertrrophy, glucocorticoid excess, 1471
Pancreatic lipase
deficiency, dietary therapy, 300
Pantothenic acid
deficiency, coenzyme A activity in colon mucosa, pig, 495
deficiency, intestinal transport, pig, 495
urine, child, nutritional status, 1274
Parasites
helminthic, intestinal, malabsorption, therapy, 1007
India, iron deficiency, 1156
intestinal, blood chemistry, absorption, therapy, 1053
intestinal, Colombia, 1053
intestinal, food utilization, 868
intestinal, Nepal, 875
intestinal, nutritional status survey, Puerto Rico, 646
intestinal, small intestine dysfunction, 1023
rural Haiti, with tropical sprue, protein deficiency, 1042
Parathyroid
kidney failure, 457
Pellagra: see Niacin
Pellagra, childhood

hemoglobin, 98
N'-methyl nicotinamide, 98
protein nutrition, 98
urinary excretion of creatinine, 98
urinary N-methyl-2-pyridone-5-carboxyamide, 98

DL-Penicillamine
oral dose, vitamin B₄ and copper metabolism, rat, 715

Perspectives in Nutrition
Amino acid fortification and the protein problem, 688
Cultural and endocrine origins of obesity, 1398
Disease as factor in world food problem, 868
Energetics and weight reduction, 305
Geophagia in man: Its nature and nutritional effects, 1384
Nutrition of the injured, 911
Nutritional requirements for vitamin B₁₂ and folic acid, 743
Protein nutrition in uremia: A review, 508
The role of chromium metabolism in mammalian nutrition, 230

Phenothiazine drugs, psychiatric patients
electrocardiogram effects, 255
Phosphate
metabolism, in uremia, 407, 457
Phosphofructoaldolase
deficiency, liver, fructose intolerance, 693
deficiency, Tay-Sachs disease, 693
Phosphofructokinase
deficiency, muscle, glycogen-storage disease, 693
Phospholipases
insulin-like activity, 1216
Phospholipids, serum
dietary fat, 255
Phosphorus
foods, hospital diets, 898
metabolism, in uremia, 423
Physical fitness
wheat-flour diet, 827
Phytate
dietary, endocrine defect syndrome, Iran, 709
Pica, 1384: see also Geophagia
iron absorption and anemia, 78
Turkey, 78

Pituitary
carbohydrate metabolism, obesity, 1404
hypopituitarism, gonadal biopsies, inanition, zinc deficiency, 1454
Placenta
transfer of thiamine, 739

Plant protein mixture
infant food and nitrogen retention, 226
infant food and weight gain, 226

Population
world, food problem, 1130

Potassium
cellular, protein-calorie malnutrition, 376
Subject Index to Volume 21

intestinal transport, pantothenate deficiency, pig, 495
growth hormone secretion, infant, child, 482
malabsorption, geophagia, 1384
human, animal experimental models, 1225
metabolism, fasting, heart disease, 1475
pyruvic kinase activity, 162
special liquid diet, for electrolyte metabolism
studies, 1321
protein, dietary
vegetables, reduced content, cooking method, 626
Potassium balance
amino acids, 167
gluten-free diet, 149
protein, serum, 167
high-gluten diet, 149
Potassium intake
protein malnutrition
whole-body levels, 149
blood chemistry, absorption, parasites, therapy,
cause of malabsorption, Colombia, 1053
Presidential Address
infant, 358
R. E. Shank: Ever-widening horizons, 1130
uremia, nutrition, 349
Program
Protein nutrition
The American Society for Clinical Nutrition,
PELLAGRA, CHILDHOOD, 98
Eighth Annual Meeting, 526
Protein synthesis defect
fat malabsorption, dietary therapy, 300
psychiatric patients
heart disease and dietary fat, 255
Protein: see also Amino Acids; Nitrogen Balance;
Pteroylglutamic acid: see Folic acid
Nutrogen; specific compounds
Public Health Service Publications
biochemical value of cereals, amino acid supple-
mentation, 688
Characteristics of persons with diabetes, United
biological value of foods, 631
States, July 1964–June 1965, 333
deficiency, absorption, blood chemistry, jejunal
Mean blood hematocrit of adults, United States,
morphology, parasites, 1042
1960–1962, 331
deficiency, pancreas secretion, 520
Serum cholesterol levels of adults, United States,
deficiency, therapy, folic acid, tetracycline, 1042
1960–1962, 331
dietary, uric acid production, 892
Puerto Rico
food supply, South Africa, 926
nutritional status survey, 646
intake and metabolism, kwashiorkor, rat, 820
tropical sprue, 1030
loss, restricted diet, 793
Pyruvic kinase activity
loss, skin, hair, and fingernails, 352
protein-calorie malnutrition, 162
malnutrition, evaluation in uremia, 638
Riboflavin
malnutrition, experimental, rat, liver enzymes,
excretion, restricted diet, 803
1374
requirement and metabolism, alcoholism, 1325
malnutrition, small intestine, adult, 813
supplementation, microatomized protein foods,
malnutrition, South Africa, 926
1355
metabolism, glucocorticoid excess, 1471
urine, alcoholics, 1329
metabolism, weight reduction diet, 1291
urine, child, nutritional status, 1274
metabolism, wheat-flour diet, 827
urine, migrant workers, 1229
microatomized foods, kwashiorkor therapy, 1355
Ribonucleic acid
nutritional status, diet, child, Hong Kong, 1197
dietary, uric acid production, 892
repletion, kidney failure, dialysis, 583
research, National Dairy Council, 1211
requirement, adult and in uremia, 352
synthesis after injury, 887
requirement, in uremia, 508
world supply, amino acid supplementation,
research, National Dairy Council, 1211
1311
synthesis after injury, 887
world supply, amino acid supplementation,
cereals, 688
Protein balance
Altitude, 154
Protein-calorie malnutrition
adenosine triphosphate growth pattern, 162
Saccharin
metabolism and safety, 673
safety, 644
Salmonella
Metabolism Notes, Perspectives
in Nutrition, Special Articles, Special Reports
enteritis, epidemiology, south India, 1077
Salt
infant food, hypertension, 787
Schizophrenia
heart disease and dietary fat, 255
Subject Index to Volume 21

Sensory development
 kwashiorkor, 844
Skin
 protein loss, 352
Smoking
 ascorbic acid, blood and urine, 1259
 plasma and leukocyte ascorbic acid, 1254
Sodium
 balance, weight reduction diet, 1291
 cellular, protein-calorie malnutrition, 376
 infant requirement, intake from processed foods, 787
 intake, infant, hypertension, 863
 intestinal transport, pantothenate deficiency, pig, 495
metabolism, diet for kidney failure, 547
metabolism, fasting, weight reduction, 1475
processed infant foods, 863
special liquid diet, for electrolyte metabolism studies, 1321
South Africa
 proteins and food supply, 926
Special Articles
 A case for the safety of cyclamate and cyclamate-saccharin combinations, 673
 Impairment of thiamine absorption in alcoholism, 1341
 Infant feeding practices—a predisposing factor in hypertension?, 863
 Nutritional research program of the National Dairy Council, 1211
 The nutritional status of alcoholics, 1329
 Vitamins and alcoholism. Introduction, 1325
Special Reports
 Colloquium on protein deficiencies and calorie deficiencies, 130
 Summary of a meeting: Proteins and food supply in South Africa, 926
 Teaching applied nutrition to medical students, 320
Spleen
 chromium, 230
Starvation
 galactose metabolism, 127
 ketosis, child, energy metabolism, hormones, 1269
 metabolic and endocrine changes, 1455
 weight reduction, energy metabolism, 1429
Starvation, acute
 body composition changes, 87
 hematology, 87
 metabolism, 87
Steatorrhea
 dietary therapy, 300
 etiology, 1097
 severity, nomogram of fecal weight, lipid, and nitrogen, 1310
Stomach
 gastrectomy, folic acid absorption, 473
gastrectomy, pancreas function, 520
Sucrase
 mucosal, tropical jejunitis, 1013
 Sucrase deficiency, infant, 516
 Sucrose-starch intolerance, infant, 516
Sulfate
 foods, hospital diets, 898
Symposia
 Endocrine aspects of obesity, 1395
 Hematologic aspects of vitamin E, 1
 Iron deficiency and absorption, 1138
 Malabsorption and malnutrition in the tropics, 933
 Nutritional aspects of uremia
 Sessions I and II, 349
 Sessions III and IV, 547
Temperature
 environmental, nutrition after injury, 911
Thiamine
 absorption and deficiency, alcoholism, 1341
 excretion, restricted diet, 803
 requirement and metabolism, alcoholism, 1325
 supplementation, microatomized protein foods, 1355
 transfer across placenta, 739
 urine, alcoholics, 1329
 urine, child, nutritional status, 1274
 urine, migrant workers, 1229
Thyroid hormone
 energy metabolism, 1480
 α-Tocopherol: see also Vitamin E
 erythrocyte stability of equines, 135
 Tocopherol deficiency
 layering hemolysis test, 135
Trace elements
 wheat, 230
Trace element supplementation
 anemia in parasitized children, 68
Transaminase
 activity, erythrocyte, vitamin B1 supplemen, 502
 glutamic-oxaloacetic, erythrocyte, 502
 glutamic-pyruvic, erythrocyte, 502
Transketolase
 activity, erythrocyte, pregnancy, 739
 erythrocyte activity, migrant workers, 1229
Triglycerides, medium-chain
 absorption, metabolism, 300
 dietary therapy, fat malabsorption, 300
Triglycerides, serum
 dietary fat, heart disease, 255
Tropical jejunitis
 absorption, metabolism, organisms, 1013
 incidence, Americans in Vietnam, 1013
 intestinal biopsy, methods, classification, 1013
Tropical sprue
 absorption, blood chemistry, jejunal morphology, parasites, 1042
 acute, Malaya, 1007
blood chemistry, absorption, parasites, therapy, 1053
chronic, compared with stagnant-loop syndrome, 1097
clinical and hematological features, west India, 994
clinical and laboratory features, 1030
Colombia, 1053
diagnosis, jejunal biopsy, absorption, 984
epidemiology, south India, 1077
jejunum and ileum, pathology, Malaya, 962
morphological identification, 944
pathogenesis, therapy, 984
prevalence, south India, 984
Puerto Rico, 1030
therapy, folic acid, antibiotics, 1007
therapy, folic acid, tetracycline, 1042
therapy, folic acid, vitamin B12, antibiotics, 1030
therapy, high protein diet and antibiotics, 994
xylitol, folic acid and vitamin B12, absorption, 994, 1007
Tryptophan metabolism, indoles, in uremia, 436
Tyrosine plasma, niacin deficiency, 1314
United States blood hematocrit, population study, 331
child health, infant mortality, 1130
diabetes, prevalence, 333
diabetes with other chronic disease, 333
diet, blood and urine chemistry, child, 1274
malnutrition, growth failure, 1130
migrant farm workers, 1229
nutritional and socioeconomic status, child, 1280
obesity, cultural and endocrine origins, 1398
serum cholesterol, population study, 331
Urea blood, uremia, special diet, 595
dietary, with low protein diet, in kidney failure, 394
metabolism, wheat-flour diet, 827
Uremia: see Kidney
Uric acid plasma and urine, diet, 892
Urocanase liver, experimental protein malnutrition, rat, 1374
Vitamin A plasma, carotene, migrant workers, 1229
requirement and metabolism, alcoholism, 1325
supplementation, microatomized protein foods, 1355
Vitamin B iron and tropical anemia, 57
Vitamin B1 excretion, restricted diet, 803
requirement and metabolism, alcoholism, 1325
requirement, rat, and diet, 715
supplement, erythrocyte transaminases, 502
Vitamin B12 absorption and metabolism, 743
absorption from colon, 298
absorption, tropical sprue, 994
availability from diet, 743
deficiency, parenteral hydroxocobalamin, 657
deficiency, secondary to malabsorption, 1053
deficiency, therapeutic dosage, 743
deficiency, tropical sprue, congenital malabsorption, 1115
dose size, biological half-time, 665
liver, formiminoglutamic acid excretion, rat, 1374
malabsorption, stagnant-loop syndrome, 1097
minimum daily adult requirement, healthy males, 743
requirement and metabolism, alcoholism, 1325
retention and accessibility, radioactive hydroxocobalamin, 653
retention and excretion, massive parenteral doses, 657
therapy, tropical sprue, 1030
Vitamin C: see Ascorbic acid
Vitamin D metabolism, in uremia, 457
requirement and metabolism, alcoholism, 1325
Vitamin, dietary hematopoiesis, 57, 68
Vitamin E: see also α-Tocopherol deficiency and therapy, 1
infants and dietary polyunsaturated fatty acids, 7
premature infants and linoleic acid, 15
premature infants, low level in, 40
requirement and metabolism, alcoholism, 1325
Vitamin E deficiency anemia, 51
anemia, erythropoietic, 3
anemia, hemolytic, 3
coenzyme Q and reticulocytosis, 51
creatine-to-creatinine ratio, 45
erythropoiesis, 51
hemolytic anemia, premature infants, 45
pregnant infants, 45
reticulocytosis, 45
therapeutic agents, 51
Vitamin E, dietary absorption, 40
reticulocytosis, 15
Vitamin E, serum, 15
Vitamin E, plasma birth, full-term, 7
birth, premature, 7
Vitamin E therapy reticulocytosis, 45
Vitamin K requirement and metabolism, alcoholism, 1325
Subject Index to Volume 21

Vitamins
 alcoholism, intake, absorption, requirements, metabolism, diet therapy, 1325
deficiency, food utilization, 868

Water
 absorption from intestine, 781
 balance, altitude, 154
 balance, calorie restriction, mineral supplements, 793
 balance, weight reduction diet, 1291
 intestinal transport, pantothenate deficiency, pig, 495
 iodine content, goiter, 277
 metabolism, diet for kidney failure, 547
 metabolism, fasting, weight reduction, 1473
Weight reduction
 cyclamate-saccharin mixture in diet, 673
 fasting or exercise, 1475
Wheat
 flour, dietary protein source, 827

Xylose
 absorption, small intestine dysfunction, 1023
 absorption, tropical sprue, 994
 tolerance, tropical jejunitis, 1013

Zinc
 deficiency, inanition hypopituitarism, gonadal biopsies, 1345
 malabsorption, deficiency, geophagia, 1384
 metabolism and nutrition, endocrine defect syndrome, Iran, 709
 plasma, children, Iran, 488
Author Index to Volume 21

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abd-El-Hadi, K.,</td>
<td>195</td>
</tr>
<tr>
<td>Abe, H.,</td>
<td>1404</td>
</tr>
<tr>
<td>Abelson, D. M.,</td>
<td>223</td>
</tr>
<tr>
<td>Adams, J. F.,</td>
<td>657</td>
</tr>
<tr>
<td>Albrink, M. J.,</td>
<td>1397, 1398</td>
</tr>
<tr>
<td>Alvirva, P.,</td>
<td>255</td>
</tr>
<tr>
<td>Amla, I.,</td>
<td>1355</td>
</tr>
<tr>
<td>Anasuva, A.,</td>
<td>723</td>
</tr>
<tr>
<td>Anson, M. L.,</td>
<td>523</td>
</tr>
<tr>
<td>Arcaysoy, A.,</td>
<td>78</td>
</tr>
<tr>
<td>Archer, M.,</td>
<td>107</td>
</tr>
<tr>
<td>Armstrong, B. K.,</td>
<td>298</td>
</tr>
<tr>
<td>Arnaud, S. B.,</td>
<td>40</td>
</tr>
<tr>
<td>Asenjo, C. F.,</td>
<td>646</td>
</tr>
<tr>
<td>Asfour, R. H.,</td>
<td>7</td>
</tr>
<tr>
<td>Atkins, H. L.,</td>
<td>1246</td>
</tr>
<tr>
<td>Awad, A. Y.,</td>
<td>277</td>
</tr>
<tr>
<td>Bagdade, J. D.,</td>
<td>426, 1434</td>
</tr>
<tr>
<td>Bailey, G. L.,</td>
<td>414</td>
</tr>
<tr>
<td>Baker, H.,</td>
<td>107, 327, 1325</td>
</tr>
<tr>
<td>Baker, S. J.,</td>
<td>984, 1077</td>
</tr>
<tr>
<td>Balestresseri, C.,</td>
<td>394</td>
</tr>
<tr>
<td>Banerji, L.,</td>
<td>1139, 1149</td>
</tr>
<tr>
<td>Barbeat, G.,</td>
<td>482</td>
</tr>
<tr>
<td>Barnes, L. A.,</td>
<td>40, 45</td>
</tr>
<tr>
<td>Barton, D.,</td>
<td>1202</td>
</tr>
<tr>
<td>Bassett, S. H.,</td>
<td>1239</td>
</tr>
<tr>
<td>Baugh, C. M.,</td>
<td>173</td>
</tr>
<tr>
<td>Bayless, T. M.,</td>
<td>1030</td>
</tr>
<tr>
<td>Beard, A. G.,</td>
<td>15</td>
</tr>
<tr>
<td>Begum, A.,</td>
<td>167</td>
</tr>
<tr>
<td>Behar, M.,</td>
<td>1345</td>
</tr>
<tr>
<td>Behrend, E. M.,</td>
<td>320</td>
</tr>
<tr>
<td>Berlyne, G. M.,</td>
<td>547</td>
</tr>
<tr>
<td>Berryman, G. H.,</td>
<td>673</td>
</tr>
<tr>
<td>Beutler, E.,</td>
<td>925</td>
</tr>
<tr>
<td>Bhattachary, E. P. M.,</td>
<td>183</td>
</tr>
<tr>
<td>Bierman, E. L.,</td>
<td>1434</td>
</tr>
<tr>
<td>Bloom, W. L.,</td>
<td>1475</td>
</tr>
<tr>
<td>Blumle, L. W., Jr.,</td>
<td>436</td>
</tr>
<tr>
<td>Bobody, K.,</td>
<td>657</td>
</tr>
<tr>
<td>Bolaños, O.,</td>
<td>1053</td>
</tr>
<tr>
<td>Bolouchi, S.,</td>
<td>827, 836</td>
</tr>
<tr>
<td>Booth, C. C.,</td>
<td>1097</td>
</tr>
<tr>
<td>Borkar, A. V.,</td>
<td>994</td>
</tr>
<tr>
<td>Bortz, W. M.,</td>
<td>1291</td>
</tr>
<tr>
<td>Boselli, B. R.,</td>
<td>1419</td>
</tr>
<tr>
<td>Boyd, J. N.,</td>
<td>217</td>
</tr>
<tr>
<td>Bozian, R. C.,</td>
<td>904</td>
</tr>
<tr>
<td>Bradfield, R. B.,</td>
<td>57, 68, 130, 1208</td>
</tr>
<tr>
<td>Brin, M.,</td>
<td>1229</td>
</tr>
<tr>
<td>Brink, M. F.,</td>
<td>1211</td>
</tr>
<tr>
<td>Brock, J. F.,</td>
<td>820, 1225, 1302</td>
</tr>
<tr>
<td>Brook, M.,</td>
<td>1254</td>
</tr>
<tr>
<td>Brown, D. A.,</td>
<td>1162</td>
</tr>
<tr>
<td>Brown, M. L.,</td>
<td>875</td>
</tr>
<tr>
<td>Brunner, O.,</td>
<td>976</td>
</tr>
<tr>
<td>Bulechek, G. M.,</td>
<td>613</td>
</tr>
<tr>
<td>Burgos, J. C.,</td>
<td>646</td>
</tr>
<tr>
<td>Burton, B. T.,</td>
<td>574</td>
</tr>
<tr>
<td>Butterworth, C. E., Jr.,</td>
<td>173, 1121</td>
</tr>
<tr>
<td>Cahill, G. F., Jr.,</td>
<td>1429</td>
</tr>
<tr>
<td>Callender, S. T.,</td>
<td>1170</td>
</tr>
<tr>
<td>Calloway, D. H.,</td>
<td>892</td>
</tr>
<tr>
<td>Capps, J. C.,</td>
<td>715</td>
</tr>
<tr>
<td>Carter, J. P.,</td>
<td>195</td>
</tr>
<tr>
<td>Caughney, J. E.,</td>
<td>488</td>
</tr>
<tr>
<td>Cavill, I. A. J.,</td>
<td>502</td>
</tr>
<tr>
<td>Champakam, S.,</td>
<td>844</td>
</tr>
<tr>
<td>Chandalia, H. B.,</td>
<td>1419</td>
</tr>
<tr>
<td>Chandrasekhar, N.,</td>
<td>736</td>
</tr>
<tr>
<td>Chandrasekharan, N.,</td>
<td>183</td>
</tr>
<tr>
<td>Christakis, G.,</td>
<td>107</td>
</tr>
<tr>
<td>Cin, S.,</td>
<td>78</td>
</tr>
<tr>
<td>Cittadini, D.,</td>
<td>394</td>
</tr>
<tr>
<td>Clark, H. E.,</td>
<td>217</td>
</tr>
<tr>
<td>Coble, Y.,</td>
<td>277</td>
</tr>
<tr>
<td>Coburn, J. W.,</td>
<td>457, 508, 533</td>
</tr>
<tr>
<td>Cohen, B. D.,</td>
<td>407</td>
</tr>
<tr>
<td>Cohn, C.,</td>
<td>250</td>
</tr>
<tr>
<td>Cohn, S. H.,</td>
<td>665, 1246</td>
</tr>
<tr>
<td>Conaty, C.,</td>
<td>583</td>
</tr>
<tr>
<td>Consolazio, C. F.,</td>
<td>87, 154, 793, 803</td>
</tr>
<tr>
<td>Contreras, I.,</td>
<td>976</td>
</tr>
<tr>
<td>Cooperman, J. M.,</td>
<td>1345</td>
</tr>
<tr>
<td>Cowell, C.,</td>
<td>107</td>
</tr>
<tr>
<td>Crescenzi, A.,</td>
<td>394</td>
</tr>
<tr>
<td>Crispin, S.,</td>
<td>1274, 1280</td>
</tr>
<tr>
<td>Cronkite, E. P.,</td>
<td>665</td>
</tr>
<tr>
<td>Crosby, W. H.,</td>
<td>1189</td>
</tr>
<tr>
<td>Cullen, A. B.,</td>
<td>626</td>
</tr>
<tr>
<td>Curran, P. F.,</td>
<td>781</td>
</tr>
<tr>
<td>Curtis, D. E.,</td>
<td>1208</td>
</tr>
<tr>
<td>Cuthbertson, D. P.,</td>
<td>911</td>
</tr>
<tr>
<td>Dahl, L. K.,</td>
<td>787</td>
</tr>
<tr>
<td>Davis, J. T.,</td>
<td>195, 277</td>
</tr>
<tr>
<td>Daw, T. A.,</td>
<td>154</td>
</tr>
<tr>
<td>De Lange, D. J.,</td>
<td>98</td>
</tr>
<tr>
<td>Demirag, B.,</td>
<td>78</td>
</tr>
<tr>
<td>De Pascale, C.,</td>
<td>394</td>
</tr>
<tr>
<td>Derr, R. J.,</td>
<td>284</td>
</tr>
<tr>
<td>Desai, H. G.,</td>
<td>994</td>
</tr>
<tr>
<td>Deshpande, V.,</td>
<td>994</td>
</tr>
<tr>
<td>De Villiers, L. S.,</td>
<td>98</td>
</tr>
<tr>
<td>Diamond, J. A.,</td>
<td>414</td>
</tr>
<tr>
<td>Dibble, M. V.,</td>
<td>1229</td>
</tr>
<tr>
<td>Dombrowski, C. S.,</td>
<td>1246</td>
</tr>
<tr>
<td>Donaldson, R. M., Jr.,</td>
<td>1088</td>
</tr>
<tr>
<td>Doron, M.,</td>
<td>1269</td>
</tr>
<tr>
<td>Dunn, M. E.,</td>
<td>167</td>
</tr>
<tr>
<td>Du Plessis, J. P.,</td>
<td>98</td>
</tr>
<tr>
<td>Eagles, J. A.,</td>
<td>1329</td>
</tr>
<tr>
<td>Eakins, J. D.,</td>
<td>1162</td>
</tr>
<tr>
<td>Eidelman, S.,</td>
<td>1110</td>
</tr>
<tr>
<td>Eisenstein, A. B.,</td>
<td>467</td>
</tr>
<tr>
<td>El Ghomly, A.,</td>
<td>195</td>
</tr>
<tr>
<td>Eltan, E.,</td>
<td>226</td>
</tr>
<tr>
<td>Elkinton, J. R.,</td>
<td>436</td>
</tr>
<tr>
<td>Elwood, P. C.,</td>
<td>1162</td>
</tr>
<tr>
<td>Eminians, J.,</td>
<td>15</td>
</tr>
<tr>
<td>England, N. W. J.,</td>
<td>962</td>
</tr>
<tr>
<td>Feeley, R. M.,</td>
<td>250</td>
</tr>
<tr>
<td>Felig, P.,</td>
<td>1429</td>
</tr>
<tr>
<td>Fernandez, N. A.,</td>
<td>646</td>
</tr>
<tr>
<td>Feurig, J. S.,</td>
<td>836</td>
</tr>
<tr>
<td>Figueroa, W. G.,</td>
<td>1239, 1381</td>
</tr>
<tr>
<td>Filer, L. J., Jr.,</td>
<td>3</td>
</tr>
<tr>
<td>Finch, C. A.,</td>
<td>1138</td>
</tr>
<tr>
<td>Finegan, A.,</td>
<td>143</td>
</tr>
<tr>
<td>Fitch, C. D.,</td>
<td>51</td>
</tr>
<tr>
<td>Ford, S., Jr.,</td>
<td>904</td>
</tr>
<tr>
<td>Forsham, P. H.,</td>
<td>1445</td>
</tr>
<tr>
<td>Fox, H. M.,</td>
<td>1197, 1274, 1280</td>
</tr>
<tr>
<td>Frank, O.,</td>
<td>107, 327</td>
</tr>
<tr>
<td>Freeman, R. M.,</td>
<td>613</td>
</tr>
<tr>
<td>Frenk, S.,</td>
<td>162</td>
</tr>
<tr>
<td>Friedemann, C. M.,</td>
<td>827</td>
</tr>
<tr>
<td>Friedman, E. A.,</td>
<td>430</td>
</tr>
<tr>
<td>Frimpter, G. W.,</td>
<td>733</td>
</tr>
<tr>
<td>Frost, A.,</td>
<td>385</td>
</tr>
<tr>
<td>Fry, E. I.,</td>
<td>1197</td>
</tr>
<tr>
<td>Fry, P. C.,</td>
<td>1197</td>
</tr>
<tr>
<td>Gaan, D.,</td>
<td>547</td>
</tr>
<tr>
<td>García, F. T.,</td>
<td>1053</td>
</tr>
<tr>
<td>García, S.,</td>
<td>1066</td>
</tr>
<tr>
<td>Garrayar, C.,</td>
<td>57, 68</td>
</tr>
<tr>
<td>Ghitis, J.,</td>
<td>1053</td>
</tr>
<tr>
<td>Ginks, W. R.,</td>
<td>547</td>
</tr>
<tr>
<td>Ginn, H. E.,</td>
<td>385, 618</td>
</tr>
<tr>
<td>Giordano, C.,</td>
<td>394</td>
</tr>
<tr>
<td>Gitelman, H. J.,</td>
<td>1321</td>
</tr>
<tr>
<td>Gleason, R. E.,</td>
<td>414</td>
</tr>
<tr>
<td>Author Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Goldberg, G.</td>
<td>898</td>
</tr>
<tr>
<td>Gombos, E. A.</td>
<td>574</td>
</tr>
<tr>
<td>Gonick, H. C.</td>
<td>898</td>
</tr>
<tr>
<td>Gonzales, L.</td>
<td>57, 68</td>
</tr>
<tr>
<td>Gopalan, C.</td>
<td>844, 1306</td>
</tr>
<tr>
<td>Gordon, E. S.</td>
<td>1480</td>
</tr>
<tr>
<td>Gordon, S.</td>
<td>553</td>
</tr>
<tr>
<td>Grande, F.</td>
<td>305</td>
</tr>
<tr>
<td>Grinsworth, J. J.</td>
<td>1254</td>
</tr>
<tr>
<td>Grodsky, G. M.</td>
<td>1445</td>
</tr>
<tr>
<td>Gruenberg, E.</td>
<td>226</td>
</tr>
<tr>
<td>Gulyassy, P. F.</td>
<td>565</td>
</tr>
<tr>
<td>Guthrie, H. A.</td>
<td>863</td>
</tr>
<tr>
<td>Halsted, J. A.</td>
<td>488, 709, 1384</td>
</tr>
<tr>
<td>Hampele, C. L.</td>
<td>414</td>
</tr>
<tr>
<td>Hansen, J. D. L.</td>
<td>482, 1314</td>
</tr>
<tr>
<td>Harlan, W. R., Jr.</td>
<td>320</td>
</tr>
<tr>
<td>Harper, A. E.</td>
<td>358</td>
</tr>
<tr>
<td>Hashim, S. A.</td>
<td>7</td>
</tr>
<tr>
<td>Hauser, W.</td>
<td>1246</td>
</tr>
<tr>
<td>Hayes, O. B.</td>
<td>853</td>
</tr>
<tr>
<td>Hazel, G. R.</td>
<td>673</td>
</tr>
<tr>
<td>Hegsted, D. M.</td>
<td>332, 688</td>
</tr>
<tr>
<td>Hendler, E. D.</td>
<td>574</td>
</tr>
<tr>
<td>Hendler, R. G.</td>
<td>574</td>
</tr>
<tr>
<td>Herbert, V.</td>
<td>289, 746, 1115</td>
</tr>
<tr>
<td>Herman, R. H.</td>
<td>127, 185, 245, 315, 316, 693, 778, 887, 1216</td>
</tr>
<tr>
<td>Hernandez, V.</td>
<td>68</td>
</tr>
<tr>
<td>Hershkovic, T.</td>
<td>520</td>
</tr>
<tr>
<td>Heta, F.</td>
<td>277</td>
</tr>
<tr>
<td>Hickey, N.</td>
<td>143</td>
</tr>
<tr>
<td>Hollifield, G.</td>
<td>1471</td>
</tr>
<tr>
<td>Holmes, W. L.</td>
<td>1291</td>
</tr>
<tr>
<td>Holt, L. E., Jr.</td>
<td>367, 1136, 1353</td>
</tr>
<tr>
<td>Hopkins, L. L., Jr.</td>
<td>203</td>
</tr>
<tr>
<td>Horowitz, H. I.</td>
<td>407</td>
</tr>
<tr>
<td>Horton, E. S.</td>
<td>1455</td>
</tr>
<tr>
<td>Hoshi, M.</td>
<td>1404</td>
</tr>
<tr>
<td>Howat, P.</td>
<td>1291</td>
</tr>
<tr>
<td>Howe, E. E.</td>
<td>523</td>
</tr>
<tr>
<td>Hughes, J. N. P.</td>
<td>502</td>
</tr>
<tr>
<td>Hurdie, A. D. F.</td>
<td>1202</td>
</tr>
<tr>
<td>Hutner, S. H.</td>
<td>327</td>
</tr>
<tr>
<td>Iber, F. L.</td>
<td>1341</td>
</tr>
<tr>
<td>Indira, K.</td>
<td>1355</td>
</tr>
<tr>
<td>Insull, W., Jr.</td>
<td>753</td>
</tr>
<tr>
<td>Irwin, M. I.</td>
<td>250</td>
</tr>
<tr>
<td>Isaac, G. J.</td>
<td>793, 803</td>
</tr>
<tr>
<td>Jacobs, A.</td>
<td>502</td>
</tr>
<tr>
<td>Jacobs, L. W.</td>
<td>715</td>
</tr>
<tr>
<td>James, G.</td>
<td>107</td>
</tr>
<tr>
<td>Jansen, G. R.</td>
<td>523</td>
</tr>
<tr>
<td>Jeejeeboy, K. N.</td>
<td>994</td>
</tr>
<tr>
<td>Jensen, M. V.</td>
<td>57, 68</td>
</tr>
<tr>
<td>Johnson, H. L.</td>
<td>87, 154, 793, 803</td>
</tr>
<tr>
<td>Johnson, J. E.</td>
<td>149</td>
</tr>
<tr>
<td>Jordan, T.</td>
<td>1239</td>
</tr>
<tr>
<td>Karam, J. H.</td>
<td>1443</td>
</tr>
<tr>
<td>Karvonen, M. J.</td>
<td>255</td>
</tr>
<tr>
<td>Kater, R. M. H.</td>
<td>1341</td>
</tr>
<tr>
<td>Kattab, A.</td>
<td>195</td>
</tr>
<tr>
<td>Kays, M.</td>
<td>583</td>
</tr>
<tr>
<td>Kerrey, E.</td>
<td>1274, 1280</td>
</tr>
<tr>
<td>Khurana, H. S.</td>
<td>107</td>
</tr>
<tr>
<td>Kies, C.</td>
<td>1274, 1280</td>
</tr>
<tr>
<td>King, K. W.</td>
<td>523</td>
</tr>
<tr>
<td>Kirsch, R. E.</td>
<td>820, 1225, 1302</td>
</tr>
<tr>
<td>Kleeman, C. R.</td>
<td>457</td>
</tr>
<tr>
<td>Klipstein, F. A.</td>
<td>939, 944, 1042</td>
</tr>
<tr>
<td>Knowles, H. C., Jr.</td>
<td>904</td>
</tr>
<tr>
<td>Kolski, S. M.</td>
<td>217</td>
</tr>
<tr>
<td>Kopp, J. D.</td>
<td>508, 553, 631</td>
</tr>
<tr>
<td>Kowadlo-Silbergeld, A.</td>
<td>1269</td>
</tr>
<tr>
<td>Kreisberg, R. A.</td>
<td>1419</td>
</tr>
<tr>
<td>Krueger, H.</td>
<td>98</td>
</tr>
<tr>
<td>Krzywicki, H. J.</td>
<td>87, 793, 803</td>
</tr>
<tr>
<td>Kuhn, I. N.</td>
<td>1184</td>
</tr>
<tr>
<td>Kwon, Y. O.</td>
<td>223</td>
</tr>
<tr>
<td>Lacy, W. W.</td>
<td>385</td>
</tr>
<tr>
<td>Lange, K.</td>
<td>595</td>
</tr>
<tr>
<td>Laron, Z.</td>
<td>1269</td>
</tr>
<tr>
<td>Layrisse, M.</td>
<td>1175, 1184</td>
</tr>
<tr>
<td>Lee, K. W.</td>
<td>223</td>
</tr>
<tr>
<td>Leevy, C. M.</td>
<td>1325</td>
</tr>
<tr>
<td>Legters, L. J.</td>
<td>1013</td>
</tr>
<tr>
<td>Lehtosuo, E. J.</td>
<td>235</td>
</tr>
<tr>
<td>Lemann, J., Jr.</td>
<td>451</td>
</tr>
<tr>
<td>Lennon, E. J.</td>
<td>451</td>
</tr>
<tr>
<td>Levin, L. S.</td>
<td>701</td>
</tr>
<tr>
<td>Levin, S.</td>
<td>603</td>
</tr>
<tr>
<td>Lewis, E. J.</td>
<td>349, 642</td>
</tr>
<tr>
<td>Lin, S. C.</td>
<td>565</td>
</tr>
<tr>
<td>Lindenbaum, J.</td>
<td>1023</td>
</tr>
<tr>
<td>Lisker, R.</td>
<td>191</td>
</tr>
<tr>
<td>Lonergan, E. T.</td>
<td>595</td>
</tr>
<tr>
<td>Lounds, E. A.</td>
<td>320</td>
</tr>
<tr>
<td>Ludwig, G. D.</td>
<td>436</td>
</tr>
<tr>
<td>Maccioni, A.</td>
<td>976, 1285</td>
</tr>
<tr>
<td>Macdonald, I.</td>
<td>1366</td>
</tr>
<tr>
<td>Magill, J. W.</td>
<td>349, 574, 642</td>
</tr>
<tr>
<td>Magotra, M. L.</td>
<td>813</td>
</tr>
<tr>
<td>Majaj, A. S.</td>
<td>203</td>
</tr>
<tr>
<td>Malone, J. H.</td>
<td>173</td>
</tr>
<tr>
<td>Marasigan, B. V.</td>
<td>15</td>
</tr>
<tr>
<td>Martin, S.</td>
<td>892, 1208</td>
</tr>
<tr>
<td>Markkanen, T.</td>
<td>473</td>
</tr>
<tr>
<td>Martinez, C.</td>
<td>1184</td>
</tr>
<tr>
<td>Martinez-Torres, C.</td>
<td>1175</td>
</tr>
<tr>
<td>Mason, K. E.</td>
<td>1</td>
</tr>
<tr>
<td>Masary, S. G.</td>
<td>457</td>
</tr>
<tr>
<td>Mathan, V. I.</td>
<td>984, 1077</td>
</tr>
<tr>
<td>Matath, Y.</td>
<td>226</td>
</tr>
<tr>
<td>Matouh, L. O.</td>
<td>87, 154, 793, 803</td>
</tr>
<tr>
<td>Maurer, B.</td>
<td>143</td>
</tr>
<tr>
<td>Mayoral, L. G.</td>
<td>1053</td>
</tr>
<tr>
<td>McCurdy, P. R.</td>
<td>284</td>
</tr>
<tr>
<td>McLean, A.</td>
<td>1310</td>
</tr>
<tr>
<td>Medal, L. S.</td>
<td>191</td>
</tr>
<tr>
<td>Medler, E. M.</td>
<td>715</td>
</tr>
<tr>
<td>Merrill, J. P.</td>
<td>414</td>
</tr>
<tr>
<td>Metcalf, J.</td>
<td>162, 376</td>
</tr>
<tr>
<td>Metz, J.</td>
<td>289, 1374</td>
</tr>
<tr>
<td>Mickelsen, O.</td>
<td>827, 836</td>
</tr>
<tr>
<td>Miettinen, M.</td>
<td>235</td>
</tr>
<tr>
<td>Minnich, V.</td>
<td>78</td>
</tr>
<tr>
<td>Mirradianian, A., 107</td>
<td></td>
</tr>
<tr>
<td>Mitchell, B. J.</td>
<td>1321</td>
</tr>
<tr>
<td>Moe, P. G., 709, 1345</td>
<td></td>
</tr>
<tr>
<td>Mollin, D. L., 1097</td>
<td></td>
</tr>
<tr>
<td>Mögelberg, F., 976, 1285</td>
<td></td>
</tr>
<tr>
<td>Morgan, A. P., 1429</td>
<td></td>
</tr>
<tr>
<td>Morrow, G., III, 40</td>
<td></td>
</tr>
<tr>
<td>Mulcahy, R., 143</td>
<td></td>
</tr>
<tr>
<td>Mulcare, D., 898</td>
<td></td>
</tr>
<tr>
<td>Munro, H. N., 926</td>
<td></td>
</tr>
<tr>
<td>Murray, P., 482</td>
<td></td>
</tr>
<tr>
<td>Narasinga Rao, B. S., 723, 1306</td>
<td></td>
</tr>
<tr>
<td>Narayana Rao, M., 1355</td>
<td></td>
</tr>
<tr>
<td>Nath, L., 107</td>
<td></td>
</tr>
<tr>
<td>Nelson, R. A., 495</td>
<td></td>
</tr>
<tr>
<td>Neville, J. N., 1329</td>
<td></td>
</tr>
<tr>
<td>Newton, D., 1162</td>
<td></td>
</tr>
<tr>
<td>Nitzan, M., 1289</td>
<td></td>
</tr>
<tr>
<td>Oberleas, D., 1345</td>
<td></td>
</tr>
<tr>
<td>O'Brien, W., 1007</td>
<td></td>
</tr>
<tr>
<td>Oiso, T., 753</td>
<td></td>
</tr>
<tr>
<td>Oji, N., 1404</td>
<td></td>
</tr>
<tr>
<td>Okçuğlu, A., 78</td>
<td></td>
</tr>
<tr>
<td>Olson, R. E., 1329</td>
<td></td>
</tr>
<tr>
<td>Oski, F. A., 40, 45</td>
<td></td>
</tr>
<tr>
<td>Owen, O. E., 1429</td>
<td></td>
</tr>
<tr>
<td>Oxman, S., 1285</td>
<td></td>
</tr>
<tr>
<td>Panos, T. C., 15</td>
<td></td>
</tr>
<tr>
<td>Pathare, S. M., 994</td>
<td></td>
</tr>
<tr>
<td>Patwardhan, V. N., 195</td>
<td></td>
</tr>
<tr>
<td>Pekkarinen, M., 253</td>
<td></td>
</tr>
<tr>
<td>Pelletier, O., 1299</td>
<td></td>
</tr>
<tr>
<td>Pendras, J. P., 638</td>
<td></td>
</tr>
<tr>
<td>Pereira, S. M., 167</td>
<td></td>
</tr>
<tr>
<td>Peters, J. H., 565</td>
<td></td>
</tr>
<tr>
<td>Pimstone, B. L., 482</td>
<td></td>
</tr>
<tr>
<td>Pinter, K. G., 1310</td>
<td></td>
</tr>
<tr>
<td>Pittaluga, F., 590</td>
<td></td>
</tr>
<tr>
<td>Pollack, H., 868</td>
<td></td>
</tr>
<tr>
<td>Porte, D., Jr., 1434</td>
<td></td>
</tr>
</tbody>
</table>
Author Index

A. S. Prasad, 191, 1345
H. A. Praanna, 1355
D. C. Price, 665
J. G. Prinsloo, 98
A. Quiroz, 68
A. D. Rabinowitz, 1438
N. Raghuramulu, 1306
V. V. Ramalingaswami, 813, 1139, 1149
D. Ransome-Kuti, 203
M. V. L. Rao, 736
F. Reina, 78
J. Roberts, 646
M. Roche, 1175, 1184
R. F. Roddam, 1419
P. Roche, 255
H. A. Ronaghy, 488, 709
F. Rubini, 590
I. M. Samloff, 944, 1042
G. Samson, 1329
P. G. Sanders, 673
A. K. Saraya, 813
S. J. Saunders, 820, 1225, 1302
R. Scheig, 203
A. Schenck, 944, 1042
L. M. Schiffer, 665
H. A. Schroeder, 230
A. Schulbert, 277
D. L. Scott, 1220
I. H. Searles, 1202
D. Senesky, 436
N. K. Shah, 875
R. E. Shank, 1130
B. Shannon, 217
T. W. Sheehy, 1013
A. L. Sheffner, 715
M. Shibuya, 733
Y. Shigeta, 1404
J. H. Shinaberger, 508, 618
W. W. Shreeve, 1404
E. A. Sims, 1455
G. Smith, 942
J. S. Soeldner, 414
S. K. Sood, 1139, 1149
M. K. Sorensen, 553, 631
R. Spada, 1285
I. Spector, 1374
R. P. Spencer, 188
S. G. Srikanthia, 212, 844, 1306
M. Srivinasa, 736
B. Stinnett, 15
H. D. Stowe, 135
R. Sundararaj, 167
V. L. Swanson, 1030
M. E. Swendseid, 382, 1194, 1381
S. G. Srinivasan, 212
S. Tabaqchali, 1097
B. N. Tandon, 813
Y. Tarcon, 78
C. C. Taylor, 1222
J. D. Taylor, 673
V. F. Thiele, 1229
W. J. Tilstone, 911
P. A. Tomasulo, 1341
K. Tripathy, 739, 1053
A. S. Truswell, 1314
T. Tsaltas, 430
K. Tsuchiya, 753
O. Turpeinen, 255
R. Vannucci, 733
P. S. Venkatachalam, 1156
E. Vinyard, 1381
B. Walker, 1184
D. K. Wallace, 1013
P. Wannenburg, 1314
G. M. Ward, 149
G. T. Warner, 1170
C. I. Wasing, 892
M. D. Watkin, 701, 883
M. S. Weinberg, 673
R. O. West, 853
F. B. Westervelt, 423
M. S. Wheby, 1030
L. Williams, 40
S. Witt, 793, 803
R. M. Worth, 875
C. Yamada, 1194, 1381
O. Yörüköglu, 78
T. Yoshida, 162
D. Zakim, 127, 185, 245, 315, 516, 693, 778, 1216
R. Zalusky, 289
G. Zapata, 15
H. Ziffer, 107
A. Züng, 1283
To appear in forthcoming issues of
THE JOURNAL OF NUTRITION

Apparent Carotenoid Increases in the Digestive Tract of Beef Cattle. R. Almendinger and F. C. Hinds.

The Serum Proteins in Guinea Pig Scurvy. N. P. Torre and F. A. Green.

Influence of Microorganisms on Intestinal Absorption. Oleic Acid 141I and Triolein 141I Absorption by Germfree and Conventionalized Rats. Tennant, Bud, Mario Teina-Guerra, Doris Harrold and Marvin Goldman.

Performance of Rats Alternately Fed Diets Higher and Lower in Energy or Protein. Karl M. Barth and James C. McConnell.

The Effects of Previous Calcium Intakes on Adaptation to Low and High Calcium Diets in Rats. J. D. Benson, R. S. Emery and J. W. Thomas.

Effect of Dietary Fat Source on the Apparent Digestibility of Fat and the Composition of Fecal Lipids of the Young Pig. R. M. G. Hamilton and B. E. McDonald.

Effects of Two Synthetic Antioxidants, Vitamin E and Ascorbic Acid, on the Choline-Deficient Rat. P. M. Newberne, M. R. Bresnahan and N. Kula.

Sequence of Limiting Amino Acids in Fish Protein Concentrate Produced by Isopropyl Alcohol Extraction of Red Hake (Urophycis chuss). B. R. Stillings, O. A. Hammerle and D. G. Snyder.

Fluoride Toxicity in the Mouse. C. W. Weber and B. L. Reid.

Factors Affecting Vitamin B4 Requirement in the Rat as Determined by Erythrocyte Transaminase Activity. Ofelia V. Dirige and John R. Beaton.

A Purified Diet for Dental Caries Research with Rats. Juan M. Nava, Hady Lopez and Robert S. Harris.

Copper Interference with the Intestinal Absorption of Zinc Amino Acid-Chelate by Rats. Darrell R. Van Campen.

Annual Subscription $30.00 in U.S.A. $32.00 all other countries
Single copies $3.00

Send Order with Payment to

AMERICAN INSTITUTE OF NUTRITION • 9650 Rockville Pike
Bethesda, Md. 20014
Information for Authors

The Editors of The American Journal of Clinical Nutrition welcome concise articles on new findings in the field of nutrition. Scientific papers of completed original research are preferred and will be given early publication. Invited papers, editorials and Perspectives in Nutrition will be utilized as space permits.

Manuscripts and books for review should be sent directly to the Editor, Milton E. Rubini, M.D., Veterans Administration Center, Wilshire and Sawtelle Boulevards, Los Angeles, California 90073.

As is customary in professional publications, statements in articles are the responsibility of the authors. Articles must be contributed solely to The American Journal of Clinical Nutrition; material is copyrighted and may not be reproduced without permission of the Executive Editor at 9650 Rockville Pike, Bethesda, Maryland 20014.

PREPARATION OF MANUSCRIPTS

Authors are requested to follow these instructions carefully in preparing manuscripts: Please double space all material, including references, using wide margins; type on one side of the sheet only; make a carbon copy for yourself and send the original and two carbon or Xerox copies to the Editor: include full name, schools, degrees, staff position and affiliation (past and present); list bibliographic references numerically and in serial order as referred to in the article. The reference number should be placed in the text between parentheses, as (5); do not use superscript for the reference number. Please make certain each reference contains name of author with initials; title of article; name of periodical, with volume, page and year. For example: Tidwell, H. C., J. C. McPherson and W. W. Burr. Effect of the saturation of fats upon the disposition of ingested cholesterol. Am. J. Clin. Nutr. 11: 108, 1962. For titles of journals, follow the abbreviations given in the Chemical Abstracts "List of Periodicals," 1961 and supplements. In references to book titles, the following should appear in sequence: name of author(s), title, place of publication, publisher's name, year of publication, and page number. Example: Siegel, S. Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill, 1956, p. 83. Authors must be responsible for the accuracy and completeness of their references as these will not be rechecked by the Editors.

Unpublished work should not be included in the list of references unless the paper has been accepted for publication. It may be recognized by such parenthetical credits as "(unpublished observations)" or "(personal communication)" in the text.

PREPARATION OF ILLUSTRATIONS

So that your article will be presented most effectively, illustrations must be glossy prints or professional drawings in black ink (never in blue; it will not produce well). All printing on illustrations should be done professionally and be large enough to be legible if reduction is necessary. Reference to all illustrations should be inserted in the text in consecutive order. Please follow these identification instructions: Write the figure number and the author's name on the back of each illustration and indicate the top. Type legends for illustrations double-spaced on a separate sheet with numbers corresponding to those on the photographs or drawings. Please do not attach legends to the pictures.

Authors are encouraged to limit illustrations and tables to the necessary minimum for lucid and precise presentation. Material in excess of 1½ Journal pages for figures, tables and legends will be charged at a rate
of $40 per page. Special arrangements must be made in advance with the publishers for any reproduction in color.

CORRECTING PROOF

Two sets of galley proofs and one set of engraver's proofs together with the original manuscript are sent to the author. Galleys should be carefully checked and any necessary changes or printer's errors (to be marked in red) should be clearly indicated in the margins. Except for correction of typographic errors, the cost of author alterations of subject matter in type will be charged to authors if these charges exceed the Journal's allowance of $10. Authors should consider this when financial arrangements are made with their institutions for payment. Proof should be returned to the Redactory Service: 9650 Rockville Pike, Bethesda, Maryland 20014.

REPRINTS

Orders for reprints of articles should be sent on the form the author receives with galley proof.

AUXILIARY PUBLICATION

Additional detailed tables, appendixes, mathematical derivations, extra figures, and other supplementary matter too costly to be included in the journal article may be submitted for deposition without charge with the American Society for Information Science (formerly the American Documentation Institute), Library of Congress. Material is deposited by the Editor with the consent of the author, and a footnote is carried in the published article to the effect that photostat or microfilm copies are available at moderate cost.

For additional technical requirements of the Journal, authors are referred to the Style Manual for Biological Journals, 2nd edition (1964), published for the Council of Biology Editors by the American Institute of Biological Sciences, 3900 Wisconsin Avenue, NW, Washington, D.C. 20016 ($3.00 a copy).

The American Journal of Clinical Nutrition
9650 Rockville Pike
Bethesda, Maryland 20014
COMPARISON

OF NUTRIENTS IN CEREALS
and Other Food Classes

TABLE 1*
(CONTENT PER 100 GM OF EDIBLE PORTION)

<table>
<thead>
<tr>
<th></th>
<th>Cereals</th>
<th>Meat & Poultry</th>
<th>Dairy Products</th>
<th>Vegetables</th>
<th>Seafood</th>
<th>Fruit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calories</td>
<td>366</td>
<td>310</td>
<td>281</td>
<td>45</td>
<td>155</td>
<td>55</td>
</tr>
<tr>
<td>Protein g</td>
<td>11</td>
<td>25.5</td>
<td>8</td>
<td>2.6</td>
<td>21</td>
<td>.9</td>
</tr>
<tr>
<td>Fat g</td>
<td>2</td>
<td>22</td>
<td>25</td>
<td>.3</td>
<td>6</td>
<td>.4</td>
</tr>
<tr>
<td>Carbohydrate g</td>
<td>77</td>
<td>.17</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Calcium mg</td>
<td>88</td>
<td>11</td>
<td>205</td>
<td>53</td>
<td>53</td>
<td>21</td>
</tr>
<tr>
<td>Iron mg</td>
<td>5</td>
<td>2.5</td>
<td>.23</td>
<td>1</td>
<td>2.2</td>
<td>.59</td>
</tr>
<tr>
<td>Vitamin D I.U.</td>
<td>0</td>
<td>48</td>
<td>1033</td>
<td>2251</td>
<td>327</td>
<td>318</td>
</tr>
<tr>
<td>Thiamine mg</td>
<td>.42</td>
<td>.14</td>
<td>.03</td>
<td>.09</td>
<td>.09</td>
<td>.04</td>
</tr>
<tr>
<td>Riboflavin mg</td>
<td>.14</td>
<td>.21</td>
<td>.25</td>
<td>.11</td>
<td>.12</td>
<td>.04</td>
</tr>
<tr>
<td>Niacin mg</td>
<td>4.6</td>
<td>6.21</td>
<td>.1</td>
<td>.85</td>
<td>4.5</td>
<td>.38</td>
</tr>
<tr>
<td>Vitamin C mg</td>
<td>0</td>
<td></td>
<td>.5</td>
<td>33.4</td>
<td>4.6</td>
<td>22</td>
</tr>
<tr>
<td>Cholesterol mg</td>
<td>0</td>
<td>61</td>
<td>104</td>
<td>0</td>
<td>110</td>
<td>0</td>
</tr>
</tbody>
</table>

It is not generally recognized that cereals are one of the best over-all sources of nutrients. When we compare the mean nutrient content of cereals with other classes of foods, as shown in Table 1, we find that cereals are highest in caloric value, equal dairy products for protein, are highest for carbohydrates, are second only to dairy products for calcium, are unsurpassed for iron and thiamine content, are only slightly behind meat for niacin content, are low in fat, and contain no cholesterol.

*The Dietary Role of Cereals in the United States, 1966. Free copy on request.

CEREAL INSTITUTE, INC. 135 South LaSalle Street, Chicago, Illinois 60603
A research and educational endeavor devoted to the betterment of national nutrition